Organic Chemistry, Fourth Edition

Janice Gorzynski Smith University of Hawai'i

Chapter 1 Structure and Bonding

Prepared by Layne A. Morsch The University of Illinois - Springfield

Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 1 Structure and Bonding

- 1.1 The Periodic Table
- 1.2 Bonding
- 1.3 Lewis Structures
- 1.4 Isomers
- 1.5 Exceptions to the Octet Rule
- 1.6 Resonance
- 1.7 Determining Molecular Shape
- 1.8 Drawing Organic Structures
- 1.9 Hybridization
- 1.10 Ethane, Ethylene, and Acetylene
- 1.11 Bond Length and Bond Strength
- 1.12 Electronegativity and Bond Polarity
- 1.13 Polarity of Molecules

2

1.1 The Periodic Table: Atomic Structure

- The nucleus contains positively charged protons and uncharged neutrons.
- The electron cloud is composed of negatively charged electrons.

Atomic Structure

- The atomic number is the number of protons in the nucleus and also the number of electrons surrounding (i.e., protons = electrons).
- The atomic mass is the number of protons plus neutrons in the nucleus (e.g., ¹²₆C has six protons and six neutrons).
- Carbon's atomic number is 6; its atomic mass is 12.
- In a neutral atom, the number of protons equals the number of electrons.

lons

Charged ions:

- A cation is positively charged and has fewer electrons than its neutral form.
- An anion is negatively charged and has more electrons than its neutral form.

5

Isotopes

Figure 1.1

- Isotopes are two atoms of the same element having a different number of neutrons.
- Most carbon atoms have 6 neutrons, but 1.1% have 7 neutrons

The Periodic Table

- Elements in the same row are similar in size.
- Elements in the same column have similar electronic and chemical properties.

Atomic Orbitals

- An s orbital has a sphere of electron density and is lower in energy than the other orbitals of the same shell.
- A *p* orbital has a dumbbell shape and contains a node (no electron density) at the nucleus. It is higher in energy than an *s* orbital.

Periodic Table

The First Row

- There is only one orbital in the first shell.
- Each shell can hold a maximum of two electrons.
- Therefore, there are two elements in the first row:
 H and He.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display first row \longrightarrow H $1s^1 \leftarrow$ electronic configuration \longrightarrow $1s^2$

Periodic Table

The Second Row

Each element in the second row of the periodic table has four orbitals available to accept additional electrons: one 2s orbital, and three 2p orbitals.

Periodic Table

The Second Row

- Each of the four orbitals in the second shell hold two electrons.
- There is a maximum capacity of eight valence electrons for elements in the second row.
- The second row of the periodic table consists of eight elements, obtained by adding electrons to the 2s and three 2p orbitals.

1.2 Bonding

- Bonding is the joining of two atoms in a stable arrangement.
- Through bonding, atoms attain a complete outer shell of valence electrons (stable noble gas configuration).
- Atoms can form either <u>ionic</u> or <u>covalent</u> bonds to attain a complete outer shell (octet rule for second row elements).
 - lonic bonds result from the transfer of electrons from one element to another.
 - Covalent bonds result from the sharing of electrons between two nuclei.

Ionic Bonding

- An ionic bond generally occurs when elements on the far left side of the periodic table combine with elements on the far right side, ignoring noble gases.
- A positively charged cation formed from the element on the left side attracts a negatively charged anion formed from the element on the right side (e.g., sodium chloride, NaCl).

13

14

Ionic Bonding

- Li loses its one electron to make Li⁺ which has no electrons in second shell. However, it has a complete first shell.
- F gains one electron to make F⁻ which has a filled valence shell (an octet of electrons), like neon.

Covalent Bonding

- Covalent bonding occurs with elements like carbon in the middle of the table (e.g., CH₄) with elements that have similar electronegativity.
- Covalent bonds also occur between two of the same elements from the sides of the table (e.g., H₂, Cl₂).
- A covalent bond is a two-electron bond, and a compound with covalent bonds is called a molecule.

15

Covalent Bonding

Example: Bonding in Molecular Hydrogen (H₂)

- Hydrogen forms one covalent bond.
- When two hydrogen atoms are joined in a bond, each has a filled valence shell of two electrons.

Valence Electrons

- <u>Second row</u> elements can have no more than eight electrons around them. For neutral molecules, this has two consequences:
 - Atoms with 1-4 valence electrons form one, two, three, or four bonds, respectively, in neutral molecules (e.g., BF_3 , CH_4).
 - Atoms with five or more valence electrons form enough bonds to give an octet (e.g., NH₃). This results in the following equation:

17

Nonbonded Electrons

• When second-row elements form fewer than four bonds, their octets consist of both bonding (shared) and nonbonding (unshared) electrons. Unshared electrons are also called *lone pairs*.

1.3 Lewis Structures

Lewis structures are electron dot representations for molecules.

General rules for drawing Lewis structures:

- 1. Draw only the valence electrons.
- 2. Give every <u>second-row</u> element no more than <u>eight</u> <u>electrons</u>.
- 3. Give each hydrogen two electrons.

How to Draw a Lewis Structure

Step [1] Arrange atoms next to each other that you think are bonded together.

• Always place hydrogen and halogens on the edge because they form only one bond each.

 Place no more atoms around an atom than the number of bonds it usually forms.

How to Draw a Lewis Structure

Step [2] Count the electrons.

- Count the number of valence electrons from all atoms.
- Add one electron for each negative charge.
- Subtract one electron for each positive charge.
- This gives the total number of electrons that must be used in drawing the Lewis structure.

Step [3] Arrange the electrons around the atoms.

- Place a bond between every two atoms, giving two electrons to each H and no more than eight to any second-row atom.
- Use all remaining electrons to fill octets with lone pairs.
- If all valence electrons are used and an atoms does not have an octet, form multiple bonds.

Step [4] Assign formal charges to all atoms.

Multiple Bonds

• If all valence electrons are used and an atom does not have an octet, form multiple bonds.

• To give both C's an octet, change one lone pair into one bonding pair between the two C's, forming a double bond.

Formal Charge

- Formal charge is the charge assigned to individual atoms in a Lewis structure.
- · Formal charge is calculated as follows:

- The number of electrons "owned" by an atom is determined by its number of bonds and lone pairs.
- An atom "owns" *all* of its unshared electrons and *half* of its shared electrons.

23

Electron Ownership

The number of electrons "owned" by different atoms is indicated in the following examples:

	Copyright @ The McGra	w-Hill Companies, Inc. Permission required for	reproduction or display	
Table 1.1 Form for C	al Charge Observe , N, and O	ed with Common	Bonding Pattern	S
	Number		Formal charge	
Atom	electrons	+1	0	-1
С	4		-c	—;;—
Ν	5	—N+ 	—ÿ— 	— <u>N</u> -
0	6	—Ö+	— <u>ö</u> —	—ö:-

25

1.4 Isomers

• Sometimes more than one arrangement of atoms (Lewis structure) is possible for a given molecular formula.

- These two compounds are called isomers.
- Isomers are different molecules having the same molecular formula. Ethanol and dimethyl ether are constitutional isomers.

1.5 Exceptions to the Octet Rule

Elements in Groups 2A and 3A

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

H-Be-H

:≓: '. :F.—B—F:

four electrons around Be

six electrons around B

Elements in the Third Row

1.6 Resonance

 Some molecules cannot be adequately represented by a single Lewis structure. For example:

- These structures are called resonance structures or resonance forms. A double-headed arrow is used to separate the two resonance structures.
- Resonance structures are two Lewis structures having the same placement of atoms but a different arrangement of electrons.

- Neither resonance structure is an accurate representation for (HCONH)⁻. The true structure is a composite of both resonance forms and is called a resonance hybrid.
- The hybrid shows characteristics of both structures.
- Resonance allows certain electron pairs to be delocalized over two or more atoms, and this delocalization adds stability.
- A molecule with two or more resonance forms is said to be resonance stabilized.

29

Basic Principles of Resonance Theory

- Resonance structures are not real. An individual resonance structure does not accurately represent the structure of a molecule or ion. Only the hybrid does.
- Resonance structures are not in equilibrium with each other. There is no movement of electrons from one form to another.
- Resonance structures are not isomers. Two isomers differ in the arrangement of both atoms and electrons, whereas resonance structures differ only in the arrangement of electrons.

Drawing Resonance Structures

Rule [1]: Two resonance structures differ in the **position** of multiple bonds and nonbonded electrons. The placement of atoms and single bonds always stays the same.

31

Drawing Resonance Structures

Rule [2]: Two resonance structures must have the same number of unpaired electrons.

Curved Arrow Notation

- Curved arrow notation is a convention that shows how electron position differs between two resonance forms.
- Curved arrow notation shows the movement of an electron pair. The tail of the arrow always begins at the electron pair, either in a bond or lone pair. The head points to where the electron pair "moves."

Atoms Without Octets

Resonance structures can have an atom with fewer than 8 electrons.

However, resonance structures can never have a second-row element with more than 8 electrons.

Occurrence of Resonance

1. Two different resonance structures can be drawn when a lone pair is located on an atom directly bonded to a double bond.

d. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Ione pair adjacent to C=C $H_2 = C - \ddot{C}H_2 \longrightarrow -\ddot{C}H_2 - C = CH_2$ $H - \ddot{C} = C - CH_3 \longrightarrow H - C = C - CH_3$ $H - \ddot{C} = C - CH_3 \longrightarrow H - C = C - CH_3$ Ione pair adjacent to C=O

35

2. Multiple resonance structures can also be drawn when an atom bearing a (+) charge is bonded

The Resonance Hybrid

- A resonance hybrid is a composite of all possible resonance structures. In the resonance hybrid, the electron pairs drawn in different locations in individual resonance forms are delocalized.
- When two resonance structures are different, the hybrid looks more like the "better" resonance structure.
- The "better" resonance structure is called the major contributor to the hybrid, and all others are minor contributors.

37

38

Resonance Hybrids

A "better" resonance structure is one that has more bonds and fewer charges.

1.7 Determining Molecular Shape

Two variables define a molecule's structure: *bond length* and *bond angle*.

• Bond length *decreases* across a row of the periodic table as the size of the atom *decreases*.

• Bond length *increases* down a column of the periodic table as the size of an atom *increases*.

Table 1.2 A	verage Bond Len	gths			
Bond	Length (pm)	Bond	Length (pm)	Bond	Length (pm)
H-H	74	H-F	92	C-F	133
C-H	109	H-CI	127	C – Cl	177
N-H	101	H-Br	141	C-Br	194
0-H	96	H-I	161	C-I	213

Copyright @ The McGraw-Hill Companies	inc	Permission required for	reproduction	or display

Molecular Geometry

- The number of groups surrounding a particular atom determines its geometry. A group is either an atom or a lone pair of electrons.
- The most stable arrangement keeps these groups as far away from each other as possible. This is exemplified by Valence Shell Electron Pair Repulsion (VSEPR) theory.

Copyrigh	t C The McGraw-Hill Companies, Inc. Permission required for reproduction	or display
Number of groups	Geometry	Bond angle
• two groups	linear	180°
 three groups 	trigonal planar	120°
• four groups	tetrahedral	109.5°

41

Two Groups Around an Atom

Three Groups Around an Atom

43

Four Groups Around an Atom

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Drawing Three-Dimensional Structures

- A solid line is used for a bond in the plane.
- A wedge is used for a bond in front of the plane.
- A dashed line is used for a bond behind the plane.

45

Equivalent Representations for Methane

- The molecule can be turned in many different ways, generating equivalent representations.
- All of the following are acceptable drawings for CH₄.

Wedges and Dashes

- Note that wedges and dashes are used for groups that are really aligned one behind another.
- It does not matter in the following two drawings whether the wedge or dash is skewed to the left or right.

A Nonbonded Pair of Electrons is Counted as a "Group"

- In ammonia (NH₃), one of the four groups attached to the central N atom is a lone pair.
- The group geometry is a tetrahedron.
- The molecular shape is referred to as a trigonal pyramid.

The 3-D Structure of Water

- In water (H₂O), two of the four groups attached to the central O atom are lone pairs.
- The group geometry is a tetrahedron.
- The molecular shape is referred to as bent.

Varying Bond Angles

Summary: Predicting Geometry Based on Number of Groups

lumber of groups			
around an atom	Geometry	Bond angle	Examples
2	linear	180°	BeH₂, HC≡CH
3	trigonal planar	120°	$BF_3, CH_2 = CH_2$
4	tetrahedral	109.5°	CH4, NH3, H2O

51

1.8 Drawing Organic Molecules—Condensed Structures

- All atoms are drawn in, but the two-electron bond lines are generally omitted.
- Atoms are usually drawn next to the atoms to which they are bonded.
- Parentheses are used around similar groups bonded to the same atom.
- Lone pairs are omitted.

Condensed Structures with C=O

In these examples, the only way for all atoms to have an octet is by having a carbon-oxygen double bond.

Skeletal Structures

- Assume there is a carbon atom at the junction of any two lines or at the end of any line.
- Assume there are enough hydrogens around each carbon to make it tetravalent.
- Draw in all heteroatoms and the hydrogens directly bonded to them.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Interpreting Skeletal Structures

Figure 1.6

 $\begin{array}{c} & & & & \\ & & &$

57

Skeletal Structures with Charged Carbon Atoms

- A charge on a carbon atom takes the place of one hydrogen atom.
- The charge determines the number of lone pairs. Negatively charged carbon atoms have one lone pair and positively charged carbon atoms have none.

Lone Pairs on Heteroatoms

- Skeletal structures often leave out lone pairs on heteroatoms, *but don't forget about them*.
- Use the formal charge to determine the number of lone pairs.

59

1.9 Orbitals and Bonding: Hydrogen

- When the 1s orbital of one H atom overlaps with the 1s orbital of another H atom, a sigma (σ) bond that concentrates electron density between the two nuclei is formed.
- This bond is cylindrically symmetrical because the electrons forming the bond are distributed symmetrically about an imaginary line connecting the two nuclei.

Orbitals and Bonding: Methane

- To account for the bonding patterns observed in more complex molecules, we must take a closer look at how the 2s and 2p orbitals of atoms in the second row are utilized.
- In addition to its two core electrons, carbon has four valence electrons.
- In its ground state, carbon places two electrons in the 2s orbital and one each in 2p orbitals.

<u>Note:</u> The lowest energy arrangement of electrons for an atom is called its ground state.

61

Divalent Carbon

- In this description, carbon should form only two bonds because it has only two unpaired valence electrons.
- However, the resulting species, CH₂, is very unstable and cannot be isolated under typical laboratory conditions.
- Note that in CH₂, carbon would not have an octet of electrons.

Tetravalent Carbon

- Promotion of an electron from a 2s to a vacant 2p orbital would form four unpaired electrons for bonding.
- This higher energy electron configuration is called an electronically excited state.

- Carbon would form two different types of bonds: three with 2*p* orbitals and one with a 2*s* orbital.
- Experimental evidence points to carbon forming four identical bonds in methane.

63

Hybrid Orbitals

- To solve this dilemma, chemists have proposed that atoms like carbon do not use pure *s* and pure *p* orbitals in forming bonds.
- Instead, atoms use a set of new orbitals called hybrid orbitals.
- *Hybridization* is the combination of two or more atomic orbitals to form the same number of hybrid orbitals, each having the same shape and energy.

Shape and Orientation of *sp*³ Hybrid Orbitals

• The mixing of a spherical 2s orbital and three dumbbell shaped 2p orbitals together produces four hybrid orbitals, each having one large lobe and one small lobe.

• The four hybrid orbitals are oriented towards the corners of a tetrahedron, and form four equivalent bonds.

Bonding Using sp³ Hybrid Orbitals

- Each bond in CH₄ is formed by overlap of an *sp*³ hybrid orbital of carbon with a 1*s* orbital of hydrogen.
- These four bonds point to the corners of a tetrahedron.

Other Hybridization Patterns

 Forming two sp hybrid orbitals uses one 2s and one 2p orbital, leaving two 2p orbitals unhybridized.

• Forming three sp² hybrid orbitals uses one 2s and two 2p orbitals, leaving one 2p orbital unhybridized.

Figure 1.9

67

sp and sp² Hybridization Examples

Determining Hybridization

- Count the number of groups (atoms and nonbonded electron pairs) around the atom.
- The number of groups corresponds to the number of atomic orbitals that must be hybridized to form the hybrid orbitals.

around an atom	number of orbitals used	type of hybrid orbital
Ļ	\downarrow	Ļ
2	2	two <i>sp</i> hybrid orbitals
3	3	three <i>sp</i> ² hybrid orbitals
4	4	four sp ³ hybrid orbitals

Hybrid orbitals of NH₃ and H₂O

1.10 Hybridization and Bonding in Ethane

Ethane, CH₃-CH₃

- Making a model of ethane illustrates one additional feature about its structure.
- Rotation occurs around the central C—C σ bond.

Hybrid Orbitals in Ethylene

Each carbon is trigonal planar. Each carbon is sp^2 hybridized.

 σ and π Bonds in Ethylene

No Free Rotation in Ethylene

- Unlike the C—C bond in ethane, rotation about the C—C double bond in ethylene is restricted.
- It can only occur if the π bond first breaks and then reforms, a process that requires considerable energy.

sp Hybrid Orbitals

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Each carbon atom has two unhybridized 2*p* orbitals that are perpendicular to each other and to the *sp* hybrid orbitals.

77

Triple Bonds

- The side-by-side overlap of two 2*p* orbitals on one carbon with two 2*p* orbitals on the other carbon creates the second and third bonds of the triple bond.
- All triple bonds are composed of one sigma and two pi bonds.

Summary of Bonding in Acetylene

Figure 1.12

lumber of groups			-	
bonded to C	Hybridization	Bond angle	Example	Observed bonding
4	sp ³	109.5°	CH₃CH₃ ethane	one o bond C _{sp³} -C _{sp³}
3	sp²	120°	CH2=CH2 ethylene	one σ bond + one π bond $C_{sp^2} = C_{sp^2}$ $C_{2p} = C_{2p}$
2	sp	180°	HC≡CH acetylene	$C_{sp}-C_{sp}$

Copyright © The McGraw-Hill Companies. Inc. Permission required for reproduction or display e 1.4 A Summary of Covalent Bonding Seen in Carbon Compounds

1.11 Bond Length and Bond Strength

- As the number of electrons between two nuclei increases, bonds become shorter and stronger.
- Triple bonds are shorter and stronger than double bonds, which are shorter and stronger than single bonds.

Carbon-Hydrogen Bonds

• The length and strength of C—H bonds vary depending on the hybridization of the carbon atom.

Percent s-Character

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

<i>sp</i> hybrid	$\frac{\text{one 2s orbital}}{\text{two hybrid orbitals}} = 50\% \text{ s-character}$
<i>sp</i> ² hybrid	$\frac{\text{one 2s orbital}}{\text{three hybrid orbitals}} = 33\% \text{ s-character}$
<i>sp</i> ³ hybrid	$\frac{\text{one 2s orbital}}{\text{four hybrid orbitals}} = 25\% \text{ s-character}$

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Increased percent s-character ---> Increased bond strength ---> Decreased bond length

1.12 Electronegativity

Electronegativity is a measure of an atom's attraction for electrons in a bond.

Bond Polarity

- Electronegativity values are used to indicate whether the electrons in a bond are equally shared or unequally shared between two atoms.
- When electrons are equally shared, the bond is nonpolar.

Nonpolar Bonds

- A carbon—carbon bond is nonpolar.
- C—H bonds are considered to be nonpolar because the electronegativity difference between C and H is small.
- Whenever two different atoms having similar electronegativities are bonded together, the bond is nonpolar.

87

88

Polar Bonds

- Bonding between atoms of different electronegativity values results in unequal sharing of electrons.
- Example: In the C—O bond, the electrons are pulled away from C (2.5) toward O (3.4), the element of higher electronegativity. The bond is polar, or *polar covalent*. The bond is said to have dipole; that is, separation of charge.

- The δ^{+} means the indicated atom is electron deficient.
- The δ^{-} means the indicated atom is electron rich.
- The direction of polarity in a bond is indicated by an arrow with the head of the arrow pointing towards the more electronegative element.
- The tail of the arrow is drawn at the less electronegative element.

89

1.13 Polarity of Molecules

Use the following procedure to determine if a molecule has a net dipole:

- Use electronegativity differences to identify all of the polar bonds and the directions of the bond dipoles.
- Determine the geometry around individual atoms by counting groups, and decide if individual dipoles cancel or reinforce each other in space.

Polar Molecules

A polar molecule has either one polar bond, or two or more bond dipoles that reinforce each other. An example is water:

Nonpolar Molecules

A nonpolar molecule has either no polar bonds, or two or more bond dipoles that cancel. An example is carbon dioxide:

> Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display $\dot{O} = C = \dot{O};$ $\delta^- \ \delta^+ \ \delta^$ *no* net dipole **The two dipoles cancel.** CO₂ is a nonpolar molecule.

Electrostatic Potential for Polar and Nonpolar Molecules

The dipoles of H_2O and CO_2 can also be visualized using electrostatic potential plots.

Figure 1.15

